Quotientenkriterium

Quotientenkriterium
Quotiẹntenkriterium,
 
Mathematik: Konvergenzkriterium für Reihen reeller oder komplexer Zahlen. Die Reihe
 
konvergiert, falls lim sup |an+1 / an| < 1 ist, sie divergiert, falls lim sup |an+1 / an| > 1 gilt. Das Quotientenkriterium ist hinreichend, aber nicht notwendig, wie man am Beispiel der Reihe
 
erkennen kann. (Wurzelkriterium)

Universal-Lexikon. 2012.

Игры ⚽ Поможем решить контрольную работу

Schlagen Sie auch in anderen Wörterbüchern nach:

  • Quotientenkriterium — Das Quotientenkriterium (d’Alembert Kriterium, nach Jean Baptiste le Rond d’Alembert) ist ein mathematisches Konvergenzkriterium, also Mittel zur Entscheidung, ob eine unendliche Reihe konvergent oder divergent ist. Inhaltsverzeichnis 1… …   Deutsch Wikipedia

  • Wurzel-Kriterium — Das Wurzelkriterium ist ein mathematisches Konvergenzkriterium, also ein Mittel zur Entscheidung, ob eine unendliche Reihe konvergent oder divergent ist. Inhaltsverzeichnis 1 Formulierungen 2 Beweisskizze 3 Restgliedabschätzun …   Deutsch Wikipedia

  • Wurzelkriterium — Das Wurzelkriterium ist ein mathematisches Konvergenzkriterium, also ein Mittel zur Entscheidung, ob eine unendliche Reihe konvergent ist. Inhaltsverzeichnis 1 Formulierungen 2 Beweisskizze 3 Restgliedabschätzung …   Deutsch Wikipedia

  • Formel von Cauchy-Hadamard — Als Konvergenzradius einer Potenzreihe der Form ist die größte Zahl r definiert, für welche die Potenzreihe für alle x mit | x − x0 | < r konvergiert. Falls sie auf der ganzen komplexen Zahlenebene konvergiert, sagt man, der Konvergenzradius… …   Deutsch Wikipedia

  • Konvergenzkriterien — In der Analysis ist ein Konvergenzkriterium ein Kriterium, mit dem die Konvergenz einer unendlichen Reihe bewiesen werden kann. Insbesondere sind damit Kriterien für die Konvergenz einer reellen Reihe gemeint. Mit einigen dieser Kriterien kann… …   Deutsch Wikipedia

  • Konvergenzradius — Als Konvergenzradius einer Potenzreihe der Form ist die größte Zahl r definiert, für welche die Potenzreihe für alle x mit | x − x0 | < r konvergiert: Dabei kennzeichnet sup das Supremum der Menge. Falls die Potenzreihe auf der ganzen… …   Deutsch Wikipedia

  • Trivialkriterium — In der Analysis ist ein Konvergenzkriterium ein Kriterium, mit dem die Konvergenz einer unendlichen Reihe bewiesen werden kann. Insbesondere sind damit Kriterien für die Konvergenz einer reellen Reihe gemeint. Mit einigen dieser Kriterien kann… …   Deutsch Wikipedia

  • Alembert — Jean Baptiste le Rond d Alembert (Maurice Quentin de La Tour) Jean Baptiste le Rond, genannt d’Alembert (* 16. November 1717 in Paris; † 29. Oktober 1783 ebenda) war einer der bedeutendsten Mathematiker und Physiker des 18. Jahrhunderts und ein …   Deutsch Wikipedia

  • D'Alembert — Jean Baptiste le Rond d Alembert (Maurice Quentin de La Tour) Jean Baptiste le Rond, genannt d’Alembert (* 16. November 1717 in Paris; † 29. Oktober 1783 ebenda) war einer der bedeutendsten Mathematiker und Physiker des 18. Jahrhunderts und ein …   Deutsch Wikipedia

  • Divergente Folge — Eine Folge kann in der Mathematik die Eigenschaft haben, sich mit wachsendem Index immer mehr einer bestimmten Zahl anzunähern. Diese Zahl nennt man Grenzwert oder Limes der Folge. Besitzt eine Folge solch einen Grenzwert, so wird sie konvergent …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”